

Research Opportunities in Advanced Research & Environmental Technologies

CHARLES E. SCHMIDT JUNE 2, 1998

ENVIRONMENTAL ISSUES

- Ozone Non-Attainment (NO_x)
- $\rightarrow PM_{2.5} (NO_x, SO_2)$
- Acid Rain (NO_x, SO₂)
- Fine Particulates and Air Toxics (Mercury)
- Waste Management (CCBs)
- Climate Change (CO₂)

PRODUCTS

- Advanced Environmental Control Technologies
 - Retrofit
 - Advanced power systems
- Information for Policy and Decision Makers
 - Quality scientific data
 - Background on emerging issues

TECH. DEVELOPMENT OBJECTIVES

- Nitrogen Oxides
 - 70% to 90% reduction at 1/2 current costs
- ➤ Mercury
 - 90% reduction at 1/2 current cost of alternative technologies

OBJECTIVES (cont'd)

Coal Combustion Byproducts

Demonstrate high value and high volume uses of CCBs

Disposal or utilization of coal byproducts is routine business practice

OBJECTIVES (cont'd)

► Carbon Dioxide

Develop low-cost options for capture, reuse, and sequestration of GHGs from fossil energy conversion systems

Develop technology options based on novel concepts to achieve near-zero GHG emissions from fossil fuels in the longer-term

Research Opportunties

- ➤ Mercury Control
- ➤ PM2.5
- ➤ Coal Combustion Byproducts
- **→** Climate Change

Research Opportunties

- ➤ Mercury Control
 - Understanding the chemistry of mercury in coal combustion flue gases
 - Sorbents or systems that capture all forms of mercury at flue gas conditions

Research Opportunties

➤ Mercury Control (Cont'd)

Atmospheric conversion chemistry

Continuous emission monitors for all forms of mercury

Better understanding of bioaccumulation of mercury in fish

Research Opportunties

➤ PM2.5

Characterization of ambient PM2.5

Relationships between sources and receptors of PM2.5

Primary PM2.5 emissions from coal combustion sources

Research Opportunties

➤ PM2.5 (Cont'd)

Epidemiological studies focused on PM2. 5 particles

Cost-effective PM2.5 control

† Nitrogen Oxides

Research Opportunties

➤ Coal Combustion Byproducts

Utilization of carbon associated with flyash

Correlations between flyash constituents and construction materials quality

Increased uses of CCBs

Research Opportunties

➤ Climate Change (CO₂)

Sequestration of CO₂ in coal seams

† Mechanisms of CO₂ retention

Storage of CO₂ in deep saline reservoirs

- † Chemistry of CO₂ interactions
- † Migration of CO₂

Research Opportunties

➤ Climate Change (CO₂)

CO₂ hydrate/clathrate formation

Enhance natural sinks

Optimal CO₂ capture concepts

† Integrate with advanced energy conversion systems

Mercury Control

- ➤ Thomas Brown 412-892-4691
- Richard Hargis 412-892-6065

PM2.5

- ➤ Thomas Feeley 412-892-6134
- ➤ Henry Pennline 412-892-6013

CCBs

- Scott Renninger 304-285-4790
- Curt White 412-892-5808

CO2

- Perry Bergman 412-892-4890
- Bob Warzinski 412-892-5863